Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474252

RESUMO

Na-V-P-Nb-based materials have gained substantial recognition as cathode materials in high-rate sodium-ion batteries due to their unique properties and compositions, comprising both alkali and transition metal ions, which allow them to exhibit a mixed ionic-polaronic conduction mechanism. In this study, the impact of introducing two transition metal oxides, V2O5 and Nb2O5, on the thermal, (micro)structural, and electrical properties of the 35Na2O-25V2O5-(40 - x)P2O5 - xNb2O5 system is examined. The starting glass shows the highest values of DC conductivity, σDC, reaching 1.45 × 10-8 Ω-1 cm-1 at 303 K, along with a glass transition temperature, Tg, of 371 °C. The incorporation of Nb2O5 influences both σDC and Tg, resulting in non-linear trends, with the lowest values observed for the glass with x = 20 mol%. Electron paramagnetic resonance measurements and vibrational spectroscopy results suggest that the observed non-monotonic trend in σDC arises from a diminishing contribution of polaronic conductivity due to the decrease in the relative number of V4+ ions and the introduction of Nb2O5, which disrupts the predominantly mixed vanadate-phosphate network within the starting glasses, consequently impeding polaronic transport. The mechanism of electrical transport is investigated using the model-free Summerfield scaling procedure, revealing the presence of mixed ionic-polaronic conductivity in glasses where x < 10 mol%, whereas for x ≥ 10 mol%, the ionic conductivity mechanism becomes prominent. To assess the impact of the V2O5 content on the electrical transport mechanism, a comparative analysis of two analogue series with varying V2O5 content (10 and 25 mol%) is conducted to evaluate the extent of its polaronic contribution.


Assuntos
Nióbio , Fosfatos , Fosfatos/química , Vidro/química , Íons , Espectroscopia de Ressonância de Spin Eletrônica , Sódio/química , Cerâmica/química
2.
Materials (Basel) ; 17(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255474

RESUMO

Sodium-phosphate-based glass-ceramics (GCs) are promising materials for a wide range of applications, including solid-state sodium-ion batteries, microelectronic packaging substrates, and humidity sensors. This study investigated the impact of 24 h heat-treatments (HT) at varying temperatures on Na-Ge-P glass, with a focus on (micro)structural, electrical, and dielectric properties of prepared GCs. Various techniques such as powder X-ray diffraction (PXRD), infrared spectroscopy-attenuated total reflection (IR-ATR), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) were employed. With the elevation of HT temperature, crystallinity progressively rose; at 450 °C, the microstructure retained amorphous traits featuring nanometric grains, whereas at 550 °C, HT resulted in fully crystallized structures characterized by square-shaped micron-scale grains of NaPO3. The insight into the evaluation of electrical and dielectric properties was provided by Solid-State Impedance Spectroscopy (SS-IS), revealing a strong correlation with the conditions of controlled crystallization and observed (micro)structure. Compared to the initial glass, which showed DC conductivity (σDC) on the order of magnitude 10-7 Ω-1 cm-1 at 393 K, the obtained GCs exhibited a lower σDC ranging from 10-8 to 10-10 Ω-1 cm-1. With the rise in HT temperature, σDC further decreased due to the crystallization of the NaPO3 phase, depleting the glass matrix of mobile Na+ ions. The prepared GCs showed improved dielectric parameters in comparison to the initial glass, with a noticeable increase in dielectric constant values (~20) followed by a decline in dielectric loss (~10-3) values as the HT temperatures rise. Particularly, the GC obtained at @450 stood out as the optimal sample, showcasing an elevated dielectric constant and low dielectric loss value, along with moderate ionic conductivity. This research uncovers the intricate relationship between heat-treatment conditions and material properties, emphasizing that controlled crystallization allows for precise modifications to microstructure and phase composition within the remaining glassy phase, ultimately facilitating the fine-tuning of material properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...